Approximation of the biharmonic problem using P1 finite element

R. Eymard¹, **R.** Herbin² and <u>M. Rhoudaf</u>³

¹ Laboratoire LAMA,	¹ Laboratoire LATP,	^{1} Laboratoire LMA,
Paris-Est Marne-la-Vallée	Aix-Marseille	FS, Meknès
Robert.Eymard@u-pem.fr	herbin@cmi.univ-mrs.fr	rhoud a fmohamed @gmail.com

Key Words: P1 finite element approximation; Biharmonic problem; Numerical results.

Abstract:

We study in this paper a P1 finite element approximation of the solution in $H_0^2(\Omega)$ of a biharmonic problem. Since the P1 finite element leads only to an approximate solution in $H_0^1(\Omega)$, a discrete laplacian operator is used in the numerical scheme. The convergence of the method is shown, for the general case of a solution whose regularity is not greater than $H_0^2(\Omega)$, thanks to compactness results and to the use of a particular interpolation of regular functions with compact supports. An error estimate is proved in the case where the solution is in $C^4(\overline{\Omega})$. The order of this error estimate is equal to 1 if the solution has a compact support, and only 1/5 otherwise. Numerical results show that these orders are not sharp in particular situations.

Références

- [1] J. DRONIOU AND R. EYMARD. (2006), A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math., 105(1):35-71.
- [2] R. EYMARD, T. GALLOUET, AND R. HERBIN. (2007), A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis. C. R., Math., Acad. Sci. Paris, 344(6):403-406.